124 research outputs found

    04281 Abstracts Collection -- Integrative Bioinformatics - Aspects of the Virtual Cell

    Get PDF
    From 04.07.04 to 09.07.04, the Dagstuhl Seminar 04281 ``Integrative Bioinformatics - Aspects of the Virtual Cell\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Expressed sequence tags from Madagascar periwinkle (Catharanthus roseus)

    Get PDF
    AbstractThe Madagascar periwinkle (Catharanthus roseus) is well known to produce the chemotherapeutic anticancer agents, vinblastine and vincristine. In spite of its importance, no expressed sequence tag (EST) analysis of this plant has been reported. Two cDNA libraries were generated from RNA isolated from the base part of young leaves and from root tips to select 9824 random clones for unidirectional sequencing, to yield 3327 related sequences and 1696 singletons by cluster analysis. Putative functions of 3663 clones were assigned, from 5023 non-redundant ESTs to establish a resource for transcriptome analysis and gene discovery in this medicinal plant

    Glucose Transport in the Extremely Thermoacidophilic Sulfolobus solfataricus Involves a High-Affinity Membrane-Integrated Binding Protein

    Get PDF
    The archaeon Sulfolobus solfataricus grows optimally at 80°C and pH 2.5 to 3.5 on carbon sources such as yeast extracts, tryptone, and various sugars. Cells rapidly accumulate glucose. This transport activity involves a membrane-bound glucose-binding protein that interacts with its substrate with very high affinity (Kd of 0.43 ¾M) and retains high glucose affinity at very low pH values (as low as pH 0.6). The binding protein was extracted with detergent and purified to homogeneity as a 65-kDa glycoprotein. The gene coding for the binding protein was identified in the S. solfataricus P2 genome by means of the amino-terminal amino acid sequence of the purified protein. Sequence analysis suggests that the protein is anchored to the membrane via an amino-terminal transmembrane segment. Neighboring genes encode two membrane proteins and an ATP-binding subunit that are transcribed in the reverse direction, whereas a homologous gene cluster in Pyrococcus horikoshii OT3 was found to be organized in an operon. These data indicate that S. solfataricus utilizes a binding-protein-dependent ATP-binding cassette transporter for the uptake of glucose

    Phylogenetic Analysis of the MS4A and TMEM176 Gene Families

    Get PDF
    The MS4A gene family in humans includes CD20 (MS4A1), FcRbeta (MS4A2), Htm4 (MS4A3), and at least 13 other syntenic genes encoding membrane proteins, most having characteristic tetraspanning topology. Expression of MS4A genes is variable in tissues throughout the body; however, several are limited to cells in the hematopoietic system where they have known roles in immune cell functions. Genes in the small TMEM176 group share significant sequence similarity with MS4A genes and there is evidence of immune function of at least one of the encoded proteins. In this study, we examined the evolutionary history of the MS4A/TMEM176 families as well as tissue expression of the phylogenetically earliest members, in order to investigate their possible origins in immune cells.Orthologs of human MS4A genes were found only in mammals; however, MS4A gene homologs were found in most jawed vertebrates. TMEM176 genes were found only in mammals and bony fish. Several unusual MS4A genes having 2 or more tandem MS4A sequences were identified in the chicken (Gallus gallus) and early mammals (opossum, Monodelphis domestica and platypus, Ornithorhyncus anatinus). A large number of highly conserved MS4A and TMEM176 genes was found in zebrafish (Danio rerio). The most primitive organism identified to have MS4A genes was spiny dogfish (Squalus acanthus). Tissue expression of MS4A genes in S. acanthias and D. rerio showed no evidence of expression restricted to the hematopoietic system.Our findings suggest that MS4A genes first appeared in cartilaginous fish with expression outside of the immune system, and have since diversified in many species into their modern forms with expression and function in both immune and nonimmune cells

    Estimating Cell Count and Distribution in Labeled Histological Samples Using Incremental Cell Search

    Get PDF
    Cell proliferation is critical to the outgrowth of biological structures including the face and limbs. This cellular process has traditionally been studied via sequential histological sampling of these tissues. The length and tedium of traditional sampling is a major impediment to analyzing the large datasets required to accurately model cellular processes. Computerized cell localization and quantification is critical for high-throughput morphometric analysis of developing embryonic tissues. We have developed the Incremental Cell Search (ICS), a novel software tool that expedites the analysis of relationships between morphological outgrowth and cell proliferation in embryonic tissues. Based on an estimated average cell size and stain color, ICS rapidly indicates the approximate location and amount of cells in histological images of labeled embryonic tissue and provides estimates of cell counts in regions with saturated fluorescence and blurred cell boundaries. This capacity opens the door to high-throughput 3D and 4D quantitative analyses of developmental patterns

    Estimating Cell Count and Distribution in Labeled Histological Samples Using Incremental Cell Search

    Get PDF
    Cell proliferation is critical to the outgrowth of biological structures including the face and limbs. This cellular process has traditionally been studied via sequential histological sampling of these tissues. The length and tedium of traditional sampling is a major impediment to analyzing the large datasets required to accurately model cellular processes. Computerized cell localization and quantification is critical for high-throughput morphometric analysis of developing embryonic tissues. We have developed the Incremental Cell Search (ICS), a novel software tool that expedites the analysis of relationships between morphological outgrowth and cell proliferation in embryonic tissues. Based on an estimated average cell size and stain color, ICS rapidly indicates the approximate location and amount of cells in histological images of labeled embryonic tissue and provides estimates of cell counts in regions with saturated fluorescence and blurred cell boundaries. This capacity opens the door to high-throughput 3D and 4D quantitative analyses of developmental patterns

    Micro-computed tomography-based phenotypic approaches in embryology: procedural artifacts on assessments of embryonic craniofacial growth and development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Growing demand for three dimensional (3D) digital images of embryos for purposes of phenotypic assessment drives implementation of new histological and imaging techniques. Among these micro-computed tomography (ÎźCT) has recently been utilized as an effective and practical method for generating images at resolutions permitting 3D quantitative analysis of gross morphological attributes of developing tissues and organs in embryonic mice. However, histological processing in preparation for ÎźCT scanning induces changes in organ size and shape. Establishing normative expectations for experimentally induced changes in size and shape will be an important feature of 3D ÎźCT-based phenotypic assessments, especially if quantifying differences in the values of those parameters between comparison sets of developing embryos is a primary aim. Toward that end, we assessed the nature and degree of morphological artifacts attending ÎźCT scanning following use of common fixatives, using a two dimensional (2D) landmark geometric morphometric approach to track the accumulation of distortions affecting the embryonic head from the native, uterine state through to fixation and subsequent scanning.</p> <p>Results</p> <p>Bouin's fixation reduced average centroid sizes of embryonic mouse crania by approximately 30% and substantially altered the morphometric shape, as measured by the shift in Procrustes distance, from the unfixed state, after the data were normalized for naturally occurring shape variation. Subsequent ÎźCT scanning produced negligible changes in size but did appear to reduce or even reverse fixation-induced random shape changes. Mixtures of paraformaldehyde + glutaraldehyde reduced average centroid sizes by 2-3%. Changes in craniofacial shape progressively increased post-fixation.</p> <p>Conclusions</p> <p>The degree to which artifacts are introduced in the generation of random craniofacial shape variation relates to the degree of specimen dehydration during the initial fixation. Fixation methods that better maintain original craniofacial dimensions at reduced levels of dehydration and tissue shrinkage lead to the progressive accumulation of random shape variation during handling and data acquisition. In general, to the degree that embryonic organ size and shape factor into ÎźCT-based phenotypic assessments, procedurally induced artifacts associated with fixation and scanning will influence results. Experimental designs will need to address these significant effects, either by employing alternative methods that minimize artifacts in the region of focus or in the interpretation of statistical patterns.</p
    • …
    corecore